インフォメーション


体幹・コアについての論文。体幹・コアは腰痛の治療・予防にも関係します。


2013/12/01 17:27

 
Grow Up Strengthより、体幹部の安定についての文献をまとめたブログ記事をご紹介します。
 
体幹部の機能解剖、ドローイン・ブレーシング2つの技術とそれらの使い分けについてまとめられています。
 
さらに記事の最後でHemsworth氏は、専門家同士の批判合戦について言及しています。
 
”自分のやり方が1番で他はダメ”という考えではなく、様々なメソッドについてメリット・デメリットを理解しクライアントに一番あったやり方をご紹介する、”コンシェルジュ的トレーナー”が今後は求められると考えています。
-----
 
Analyzing Core Stabilization Technique - Bridging the Gap
 
”体幹部の安定”というトピックはよく聞くであろう。最近のフィットネス業界で乱用されているキーワードであるが、”果たして本当に正しい情報がクライアントに伝わっているか?”
 
体幹部の安定とは何なのか?
 
これは100人のスポーツ科学者に聞けば100通りの答えが出てくるくらい難しい問題です。
 
体幹部の安定とは、”スタティックまたはダイナミックな動作中にいかなる運動エネルギーのロスも無いように、脊柱とその周囲を安定させる能力”のことである。
 
一流アスリートが力強く無駄のない動きが可能な理由を知れば、脊柱への負担を最小限に減らつつ最も効率的な動作ができる理由もわかるであろう。
 
体幹部の機能解剖学
 
内・外腹斜筋:
腹直筋と共に脊柱の屈曲に大きな役割を果たし、腰椎の側屈・回旋と安定性への関与も深い。さらに息を吐き出す際にも活性化する。
 
腹横筋:
胸部の回旋、胸腔・腹腔の内圧向上に関与し、排便時にも重要。
 
腹直筋:
体幹部の主な屈曲筋で、腹斜筋群と共に脊柱の”囲い”を形成し相互に運動エネルギーの伝達を行う。
 
回旋筋:
筋紡錘が多く分布するため脊柱のポジションを安定させる上では、他の脊柱回旋筋より重要な役割を果たす。
回旋筋は腹斜筋群と広背筋が生み出す、”脊柱を回旋させる力”に対して拮抗する力を発揮するときに最も活性化される。
 
脊柱起立筋群・最長筋&腸肋筋:
胸部と腰部にまたがり、脊柱を伸展させる主動筋である。
 
多裂筋:
脊柱の伸展にも関与するが、脊柱が外部ストレスに耐えられるように各椎骨のポジションを調整する役割が大きい。
 
腰方形筋:
腰椎を両側から支える柱・壁の役割を果たす。
 
大腰筋:
股関節屈曲主動筋で起始がT12~L5であるため、脊柱の安定に関与すると考えられる。
 
体幹部安定のメカニズム:
ドローイン(Abdominal Hollowing) vs ブレーシング(Abdominal Bracing)
 
腰部を負傷した後、腹横筋と多裂筋は正常に機能せず、身体全体の筋活性にも影響を及ぼすとされている。
 
ドローインでは腹横筋のみを分離して働かせ、腹直筋と腹斜筋群はリラックスさせている状態のことである。
 
ブレーシングは、脊柱を取り囲む腹直筋、腹斜筋群、腹横筋、多裂筋、広背筋、腰方形筋と脊柱伸展筋群を共同で活性化させ、安定させることを目的としている。
 
ブレーシング中はお腹を凹ませたり膨らませたりせずに、腹腔を内側から押し上げて広げるようにする。
 
もし誰かがあなたの腹を殴ろうとするときに、あなたはきっとお腹周りを固くして、パンチの衝撃に耐えながら脊柱の安定を図ることでしょう。
 
ドローインとブレーシングをどう使い分けるか?
 
体幹部安定と脊柱周囲筋の活性化を目的としたテクニックには違いがある。
 
クライアントが急性・慢性障害のリハビリテーションを目的にしてあなたを訪ねて来た場合、その一環で筋バランスや活性パターンの適正化を図るのは当然である。
 
負傷前には無意識でできたドローインを再教育する。
また、無く何らかの目的で強くなりたいと望むクライアントであれば、より強度の高い運動を行わなければならないため、ブレーシングを身につけさせなければいけない。
 
リハビリでもストレングスが目的であっても、両方のテクニックに筋活性パターンの再教育、筋の分離と共同性の確立といった利点があるので、手法はあくまでクライアントの状況に合わせて選択すべきである。
 
 
 
http://www.gustrength.com/training:core-stabilization-bridging-the-gap/comments/show
 
 
Analyzing Core Stabilization Techniques - Bridging the Gap
» Ground Up Strength Categories » Training » Core Strength And Stability » Analyzing Core Stabilization Techniques - Bridging the Gap
 
 
As most of you know, the world of core stabilization has yielded as much attention as Paris Hilton buying a new Chihuahua. The difference: core stabilization warrants most of the attention it gets. I say "most" because as with many catchy terms in the fitness industry, it can be abused with the content that goes into defining these terms. However, for the sake of this article I am going to review what I feel to be the more logical techniques that are involved in stabilizing that snake-like structure we call the spine.
 
What is Core Stabilization?
 
That's the million dollar question isn't it? If you asked 100 different sport scientists that question, you would get 100 different answers. To me, core stabilization is the ability to create uncompromising stiffness around the spine as to not allow any "energy leaks" during various static or dynamic tasks. You may agree or disagree with me on that definition, but the bottom line is this: Whether you are an elite athlete, construction worker, or receptionist, chances are you will probably go through some sort of back pain in your life. So throw the 6-pack talk out the window for now and start thinking about the spine. If we can ensure the athlete is a column of strength with no loose kinks in the chain, then we can ensure optimal power with minimal force loads on the spine.
 
 
Stability Ball Exercise Progressions for Building Muscle and Core Strength
Dead Bug Track (Using Posterior Pelvic Tilt)
 
 
First, let's look at the anatomy.
 
Internal & External Obliques (IO & EO): Involved in flexion, as their forces are redirected to the rectus abominis (RA) to enhance the flexor potential. They are involved in lateral bending, twisting, and stabilization of the lumbar spine (McGill, 1991a, 1991b, 1992; Juker, McGill, and Kropf, 1998). Lastly, they are involved in active expiration (Henke et al., 1988).
 
Transverse Abdominis: Rotates thorax from side to side, increases interthoracic pressure, and is involved in defecation, urination, childbirth. The TA is also an anticipatory muscle.
 
Rectus Abdominis (RA): The major flexor of the trunk. It forms a continuous hoop around the spine by transferring the forces from the obliques. The upper and lower RA are activated together and at similar rates during flexion (Lehman & McGill, 2001): So throw your "upper and lower abdominal exercises" out the window.
 
Rotatores: Have a high number of muscle spindles and thus serve more as a spinal positioner than a rotator of the spine (Nitz & Peck, 1986). They are most active when trying to resist the rotation of the spine that the obliques and latissimus are likely causing.
 
Extensors
 
Longissimus & Iliocostalis: Have thoracic and lumbar components. These are the major back extensors.
 
Multifidus: Extension of the spine but only through the correcting of spinal joints that are enduring stress. Line of action actually contributes to shearing forces of superior vertebrae.
 
Quadratus Lumborum (QL): Bilateral support wall or stabilizer for the lumbar spine. The QL is active during flexion, extension, and lateral bending of the spine and maybe one of the few muscles that doesn't turn off during the flexion/relaxation phenomenon.
 
Psoas: Major hip flexor. May assist in some stabilization due to its orientation (Origin is T12-L5).
 
Core Stabilization Mechanisms
 
Abdominal Hollowing vs. Abdominal Bracing.
 
The abdominal hollowing technique was essentially developed from a group of Australian sport scientists (Richardson et al. 1999). This "Queensland group" determined that the transverse abdiminis (TA) and multifidus (MT) muscles in particular, were very important muscles for motor patterning. They found that following injury to the back, the TA and MT underwent motor disturbances that had profound effects on the motor patterning of the body. Because further injury would just add to these effects leading to a chronic state of poor patterning and pain, the Queensland group argued that only specific abdominal activation techniques could break this poor programming. Thus was born the abdominal hollowing technique: This technique involves the drawing in of the abdomen in an attempt to isolate the TA, while relaxing the surrounding musculature (RA, IO, EO).
 
The abdominal bracing technique was primarily developed - or more appropriately, coined - by Canadian biomechanist Stuart McGill. This technique involves the co-activation of all the muscles surrounding the spine (RA, IO, EO, TA, MT, Latissimus, QL, and the extensors) in an attempt to create 360 degrees of stability. While bracing, the individual doesn't draw in or push out, but rather "braces" or widens the trunk. If you think about what you would do if someone was to punch you in the stomach: You would set or brace for the punch and effectively create stability all the way around the spine. (For more on abdominal bracing, see Ultimate Back Fitness & Performance by Stuart McGill).
 
To Brace or Hollow: That is the question.
 
Much of the data that came out of the Queensland research was misinterpreted. Because they were working with injured individuals with malfunctioning motor patterns, the techniques they came up with were an attempt to disrupt the faulty patterns and educate the patients on abdominal control. Moreover, the TA anticipates trunk, upper and lower limb movement as well as protects the spine (Hodges, 1999). This anticipatory and protective function can be lost with acute or chronic low back pain. However, many clinicians took this information and regarded the techniques as a way of creating optimal core stability during various tasks. Thus, abdominal hollowing seems to be the preferred choice of many physiotherapists, strength coaches, chiropractors and kinesiologists for core stabilization.
 
Enter Stuart McGill! Not dismissing the importance of these muscles in their role as intra-abdominal pressure creators and stabilizers, McGill and others have since argued that this is simply not enough to endure tasks of even moderate intensity. Furthermore, during athletic events, unpredictable forces from all directions occur in almost any sport. Specifically, if a posterior perturbation - or unsuspected push from behind - occurs on the spine (lets say a defensive stiff-arm as you lean into a defender in basketball), abdominal hollowing produces the same resistance to the force that no activation does and results in an increase in spinal flexion (vs. 43% reduction of spinal flexion when bracing is used) (Vera-Garcia et al. 2007). As kettlebell lifter and educator Brett Jones says, if you took a cardboard box on its side and loaded it from the top, the box would crumble. Just ask Human Motion's Cliff Harvey what would have happened if he drew his stomach in while attempting world record lifts in weightlifting: He too would have crumbled. Furthermore, it is almost certain that if you try to contract only the TA, you will have activity in the IO and EO as well.
 
When the muscles surrounding the spine co-contract, they create a stiffness that is greater than the sum of the individual muscle stiffness (McGill, 2006). Thus, during the hollowing procedure, you are actually inhibiting the potential for optimal stiffness, ultimately limiting performance. You would think that in order to brace properly and ensure "superstiffness" that you would need to have an all out contraction during most activities. However, this doesn't seem to be the case as the first 25% of a maximal abdominal contraction creates sufficient stiffness for most activities (Brown & McGill, 2005). During 1RM lifts such as Cliff's world record attempts however, a maximum voluntary contraction (MVC) of all the surrounding musculature is necessary to withstand the massive force.
 
Let's hug it out: We are dealing with apples and oranges
 
There seems to be a lack of understanding as to the different techniques used between physios and strength coaches for core stabilization and activation. When a patient is seeing a physio, they are exactly that - a patient. Most of the time they are coming from an injury and have consequently obtained faulty patterns within their muscle sequencing. On the other hand, they could have had years of overuse injuries or poor gait biomechanics that has led to muscular imbalances. Thus, abdominal hollowing seems to be the technique of choice to help create that control that probably was never there even before the "injury" brought them to rehab. THIS IS PERFECTLY FINE. This is our group of apples. Our group of oranges are either these same patients coming from physio or our uninjured group of individuals who need to get stronger. Once these individuals are able to withstand heavier forces and are loaded up with weights, abdominal hollowing is no longer sufficient to lift this kind of weight, while sparing the spine. Thus, the abdominal brace must be taught. Herein lies the problem. We are constantly nagging each other (various health care practitioners) about the different techniques used. We need to remember that it is the needs of the client/patient that is our primary concern. WE NEED TO EDUCATE AND PREPARE THEM FOR THE NEXT STEP. Physios: Inform the patient that if they are an athlete or they are going to be lifting weights in the future, they will have to learn both techniques. Strength coaches: Actually integrate both techniques into your training. Isolate then integrate. It is a great way to allow the client to achieve initial success (abdominal hollowing) and then allow them to see the big picture of lifting heavier loads (abdominal bracing).
 
An integrated team approach can produce great success for the athlete, however, all members need to be on the same page even if their philosophies differ. Work with each other to produce the best results for the client/patient. Your athlete will ultimately be stronger, safer, and less confused in the process!
 
References
 
Brown, & McGill . (2005). Muscle force-stiffness characteristics influence joint stability: A spine example. Clinical Biomechanics, 20(9), 917.
Henke, Sharratt, Pegelow, & Dempsey, (1988). Regulation of end-expiratory lung volume during exercise. Journal of Applied Physiology, 64(1), 135.
Hodges (1999). Is there a role for transversus abdominis in lumbo-pelvic stability? Manual Therapy, 4(2), 74.
Juker, Mcgill, & Kropf, (1998). Quantitative intramuscular myoelectric activity of lumbar portions of psoas and the abdominal wall during a wide variety of tasks. Medicine and Science in Sports and Exercise, 30(2), 301.
Lehman & McGill, (2001). Quantification of the differences in electromyographic activity magnitude between the upper and lower portions of the rectus abdominis muscle during selected trunk exercises. Physical Therapy, 81(5), 1096.
McGill, (1991a). Electromyographic activity of the abdominal and low back musculature during the generation of isometric and dynamic axial trunk torque: Implications for lumbar mechanics. Journal of Orthopaedic Research, 9(1), 91.
McGill, (1991b). Kinetic potential of the lumbar trunk musculature about three orthogonal orthopaedic axes in extreme postures. Spine, 16(7), 809.
McGill, (1992). A myoelectrically based dynamic 3-D model to predict loads on lumbar spine tissues during lateral bending. Journal of Biomechanics, 25(4): 395.
McGill, (2006). Ultimate back fitness and performance. Waterloo, ON: Backfitpro Inc.
Nitz & Peck, (1986). Comparison of muscle spindle concentrations in large and small human epaxial muscles acting in parallel combinations. The American Surgeon, 52(5), 273.
Richardson, Jull, Hodges, & Hides, (1999). Therapeutic exercise for spinal segmental stabilization in low back pain. Edinburgh, Scotland: Chruchill Livingstone.
Vera-Garcia, Elvira, Brown, & McGill (2007). Effects of abdominal stabilization maneuvers on the control of spine motion and stability against sudden trunk perturbations. Journal of Electromyography and Kinesiology, 17(5), 556.


< 前へ一覧次へ >

このページの先頭へ[1]

HOME[0]

050-3636-0941
メールでのお問い合わせ
メール返信はすぐにできますので
できるだけメールをご利用くださるようお願いします。

当院の紹介
お問い合わせ
プライバシーポリシー

(C) 松江 はり・きゅう治療院